Interaction Model

Interaction models for categorical data are loglinear
models describing association among categorical var-
iables. They are called interaction models because of
the analytic equivalence of loglinear Poisson regres-
sion models describing the dependence of a count
variable on a set of categorical explanatory variables
and loglinear models for contingency tables based on
multinomial or product multinomial sampling. The
term is, however, somewhat misleading, because the
interpretation of parameters from the two types of
models are very different. Association models would
probably be a better name.

Instead of simply referring the discussion of inter-
action and association models to the section on log-
linear models, we will consider these models from
the types of problems that one could address in
connection with analysis of association. The first
problem is a straightforward question of whether or
not variables are associated. To answer this ques-
tion, one must first define association and dissocia-
tion in multivariate frameworks and, secondly, define
multivariate models in which these definitions are
embedded. This eventually leads to a family of so-
called graphical models that can be regarded as the
basic type of interaction or association. The sec-
ond problem concerns the properties of the identified
associations. Are associations homogeneous or het-
erogeneous across levels of other variables? Can the
strength of association be measured and in which
way? To solve these problems, one must first decide
upon a natural measure of association among cate-
gorical variables and, secondly, define a parametric
structure for the interaction models that encapsu-
lates this measure. Considerations along these lines
eventually lead to the family of hierarchical loglin-
ear models for nominal data and models simplifying
the basic loglinear terms for ordered categorical
data.

Graphical Interaction Models

What is meant by association between two variables?
The most general response to this question is indirect.
Two variables are dissociated if they are conditionally
independent given the rest of the variables in the
multivariate framework in which the two variables

are embedded. Association then simply means that
the two variables are not dissociated.

Association in this sense is, of course, not a very
precise statement. It simply means that conditions
exist under which the two variables are not inde-
pendent. Analysis of association will typically have
to go beyond the crude question of whether or not
association is present, to find out what characterizes
the conditional relationship — for instance, whether
it exists only under certain conditions, whether it is
homogeneous, or whether it is modified by outcomes
on some or all the conditioning variables. Despite the
inherent vagueness of statements in terms of unqual-
ified association and dissociation, these statements
nevertheless define elegant and useful models that
may serve as the natural first step for analyses of
association in multivariate frames of inference. These
so-called graphical models are defined and described
in the subsections that follow.

Definition

A graphical model is defined by a set of assumptions
concerning pairwise conditional independence given
the rest of the variables of the model.

Consider, for instance, a model containing six
variables, A to F. The following set of assump-
tions concerning pairwise conditional independence
defines four constraints for the joint distribution
Pr(A, B, C, D, E, F). The family of probability dis-
tributions satisfying these constraints is a graphical
model:

A L C|BDEF & Pr(A,C|BDEF)

=Pr(A|BDEF) Pr(C|BDEF),

A 1 D|BCEF < Pr(A, DIBCEF)

=Pr(A|BCEF) Pr(D|BCEF),

B L E|ACDF & Pr(B, E|ACDF)

=Pr(B|ACDF) Pr(E|ACDF),

C L E|ABDF & Pr(C, E|ABDF)

=Pr(C|ABDF) Pr(E|ABDF).
Interaction models defined by conditional indepen-
dence constraints are called “graphical interaction

models”, because the structure of these models can be
characterized by so-called interaction graphs, where
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Figure 1 An interaction graph

variables are represented by nodes connected by undi-
rected edges if and only if association is permitted
between the variables. The graph shown in Figure 1
corresponds to the set of conditional independence
constraints above, because there are no edges con-
necting A to C,Ato D, B to E, and C to E.

Interaction graphs are visual representations of
complex probabilistic structures. They are, however,
also mathematical models of these structures, in the
sense that one can describe and analyze the interac-
tion graphs by concepts and algorithms from math-
ematical graph theory and thereby infer properties
of the probabilistic model. This connection between
probability theory and mathematical graph theory is
special to the graphical models.

The key notion here is conditional independence,
as discussed by Dawid [5]. While the above defi-
nition requires that the set of conditioning variables
always includes all the other variables of the model,
the results described below imply that conditional
independence may sometimes be obtained if one con-
ditions with certain subsets of variables.

Graphical models for multidimensional tables
were first discussed by Darroch et al. [5]. Since then,
the models have been extended both to continuous
and mixed categorical and continuous data and to
regression and block recursive models. Whittaker [9],
Edwards [7], Cox & Wermuth [4], and Lauritzen [8]
present different accounts of the theory of graphical
models. The sections below summarize some of the
main results from this theory.

The Separation Theorem

The first result connects the concept of graph separa-
tion to conditional independence.

First, we present a definition: a subset of nodes
in an undirected graph separate two specific nodes,
A and B, if all paths connecting A and B intersect
the subset. In Figure 1, (B, D, F) separate A and B,
as does (B, E, F). E and C are separated by both
(A,D,F)and (B, D, F).

The connection between graph separation and
conditional independence is given by the follow-
ing result, sometimes referred to as the separation
theorem.

Separation Theorem. If variables A and B are
conditionally independent given the rest of the vari-
ables of a multivariate model, A and B will be
conditionally independent given any subset of vari-
ables separating A and B in the interaction graph of
the model.

The four assumptions on pairwise conditional inde-
pendence defining the model shown in Figure 1 gen-
erate six minimal separation hypotheses:

A LC|BDF, ALC|BEF, AL D|BEF,
B L E|ADF, C L E|ADF, C L E|BDF.

Closure and Marginal Models

It follows from the separation theorem that graphical
models are closed under marginalization, in the sense
that some of the independence assumptions defining
the model transfer to marginal models.

Collapsing, for instance, over variable C of the
model shown in Figure 1 leads to a graphical model
defined by conditional independence of A and D and
B and E, respectively, because the marginal model
contains separators for both AD and BE (Figure 2).

Loglinear Representation of Graphical Models for
Categorical Data

No assumptions have been made so far requiring vari-
ables to be categorical. If all variables are categorical,
however, the results may be considerably strength-
ened both with respect to the type of model defined
by the independence assumptions of graphical mod-
els and in terms of the available information on the
marginal models.

The first published results on graphical models
[5] linked graphical models for categorical data to
loglinear models:
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Figure 2 An interaction graph obtained by collapsing the
model defined by Figure 1 over variable C

A graphical model for a multidimensional contin-
gency table without structural zeros is loglinear
with generators defined by the cliques of the inter-
action graph.

The result is an immediate result of the fact that
any model for a multidimensional contingency table
has a loglinear expansion. Starting with the saturated
model, one removes all loglinear terms containing
two variables assumed to be conditional indepen-
dent. The loglinear terms remaining after all the
terms relating to one or more of the independence
assumptions of the model have been deleted define
a hierarchial loglinear model with parameters corre-
sponding to each of the completely connected subsets
of nodes in the graph.

The interaction graph for the model shown in
Figure 1 has four cliques, BCDF, ABF, AEF, and
DEF, corresponding to a loglinear model defined
by one four-factor interaction and three three-factor
interactions.

Separation and Parametric Collapsibility

While conceptually very simple, graphical models
are usually complex in terms of loglinear structure.
The problems arising from the complicated para-
metric structure are, however, to some degree to
be compensated for by the properties relating to
collapsibility of the models.

Parametric collapsibility refers to the situation
in which model terms of a complete model are
unchanged when the model is collapsed over one or

more variables. Necessary conditions implying para-
metric collapsibility of loglinear models are described
by Agresti [1, p. 151] in terms which translate into
the language of graphical models:

Suppose variables of a graphical model of a multi-
dimensional contingency table are divided into three
groups. If there are no edges connecting variables
the first group with connected components of the
subgraph of variables from the third group, then
model terms among variables of the first group are
unchanged when the model is collapsed over the
third group of variables.

Parametric collapsibility is connected to separation
in two different ways. First, parametric collapsibil-
ity gives a simple proof of the separation theorem,
because a vanishing two-factor term in the complete
model also vanishes in the collapsed model if the sec-
ond group discussed above contains the separators
for the two variables. Secondly, separation proper-
ties of the interaction graph may be used to identify
marginal models permitting analysis of the relation-
ship between two variables. If one first removes the
edge between the two variables, A and B, and sec-
ondly identifies separators for A and B in the graph,
then the model is seen to be parametric collapsible on
to the model containing A and B and the separators
with respect to all model terms relating to A and B.

The results are illustrated in Figure 3, where
the model shown in Figure 3(a) is collapsed on to
marginal models for ABCD and CDEF. The sepa-
ration theorem is illustrated in Figure 3(b). All terms
relating to A and B vanish in the complete model.
The model satisfies the condition for parametric col-
lapsibility, implying that these parameters also vanish
in the collapsed model. The second property for
the association between E and F is illustrated in
Figure 3(c). C and D separate E and F in the graph
from which the EF edge has been removed. It fol-
lows, therefore, that £ and F cannot be linked to one
and the same connected component of the subgraph
for the variables over which the table has been col-
lapsed. The model is therefore parametric collapsible
on to CDEF with respect to all terms pertaining to E
and F.

Decomposition and Reducibility

Parametric collapsibility defines situations in which
inference on certain loglinear terms may be per-
formed in marginal tables because these parameters
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(©)

Figure 3 Collapsing the model given in (a) illustrates
the separation theorem for A and B (b), and parametric
collapsibility with respect to £ and F (c)

are unchanged in the marginal tables. Estimates of,
and test statistics for, these parameters calculated in
the marginal tables will, however, in many cases
differ from those obtained from the complete table.
Conditions under which calculations give the same
results may, however, also be stated in terms of the
interaction graphs.

An undirected graph is said to be reducible if it
partitions into three sets of nodes — X, Y, and Z —
if Y separates the nodes of X from those of Z and
if the nodes of Y are completely connected. If the
interaction graph meets the condition of reducibility,
it is said to decompose into two components, X + Y

O——C—=O

Figure 4 An interaction graph of a reducible model

and Y + Z. The situation is illustrated in Figure 4,
which decomposes into two components, ABC D and
CDEF.

It is easily seen that reducibility above implies
parametric collapsibility with respect to the parame-
ters of X and Z, respectively. It can also be shown,
however, that likelihood-based estimates and test
statistics obtained by analysis of the collapsed tables
are exactly the same as those obtained from the com-
plete table.

Regression Models and Recursive Models

So far, the discussion has focused on models for
the joint distribution of variables. The models can,
however, without any problems, be extended first
to multidimensional regression models describing the
conditional distribution of a vector of dependent vari-
ables given another vector of explanatory variables
and, secondly, to block recursive systems of vari-
ables. In the first case, the model will be based
on independence assumptions relating to either two
dependent variables or one dependent and one inde-
pendent variable. In the second case, recursive mod-
els have to be formulated as a product of separate
regression models for each recursive block condition-
ally given variables in all prior blocks. To distinguish
between symmetric and asymmetric relationships
edges between variables in different recursive blocks,
interaction graphs are replaced by arrows.
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Parametric Structure: Homogeneous or
Heterogeneous Association

The limitations of graphical models for contingency
tables lie in the way in which they deal with higher-
order interactions. The definition of the graphical
models implies that higher-order interactions may
exist if more than two variables are completely
connected.

It is therefore obvious that an analysis of associ-
ation by graphical models can never be anything but
the first step of an analysis of association. The graph-
ical model will be useful in identifying associated
variables and marginal models where associations
may be studied, but sooner or later one will have
to address the question of whether or not these asso-
ciations are homogeneous across levels defined by
other variables and, if not, which variables modify the
association. The answer to the question of homogene-
ity of associations depends on the type of measure
that one uses to describe or measure associations. For
categorical data, the natural measures of association
are measures based on the so-called cross product
ratios [2] (see Odds Ratio). The question therefore
reduces to a question of whether or not cross prod-
uct ratios are constant across different levels of other
variables, thus identifying loglinear models as the nat-
ural framework within which these problems should
be studied.

Ordinal Categorical Variables

In the not unusual case of association between ordi-
nal categorical variables, the same types of argument
apply against the hierarchical loglinear models as
against the graphical models. Loglinear models are
basically interaction models for nominal data; and, as
such, they will give results that are too crude and too
imprecise for ordinal categorical data. The question of
whether or not the association between two variables
is homogeneous across levels of conditioning vari-
ables can, for ordinal variables, be extended to a ques-
tion of whether or not the association is homogeneous
across the different levels of the associated variables.

While not abandoning the basic loglinear association
structure, the answer to this question depends on the
further parameterization of the loglinear terms of the
models. We refer to a recent discussion of these prob-
lems by Clogg & Shihadeh [3].

Discussion

The viewpoint taken here on the formulation of inter-
action models for categorical data first defines the
family of graphical models as the basic type of
models for association and interaction structure. Log-
linear models are, from this viewpoint, regarded as
parametric graphical models, meeting certain assump-
tions on the nature of associations not directly
captured by the basic graphical models. Finally, dif-
ferent types of models for ordinal categorical data
represent yet further attempts to meet assumptions
relating specifically to the ordinal nature of the
variables.
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